The line segment joining the points (3,−4) and (1,2) is trisected at the points P and Q. If the and co-ordinates of P and Q are (p,−2) and (53,q) respectively, find the value of p and q.
letDbemid−pointofABthenmidpointofPQwillbeDtoo.nowco−ordinateofD=((3+12),(−4+22))=(2,−1)nowmid−pointofDusingcoordinatesofPandQ=((p+(53)2),(−2+q2))∴(p+(53)2)=2p=4−(53)=(43)and(−2+q2)=−1−2+q=−2q=0