The line segment joining the points (3,−4) and (1,2) is trisected at the points P and Q. If the coordinates of P and Q are (p,−2) and (53,q) respectively, find the values of p and q.
Points P and Q trisect the line segment joining the points A(3,−4) and B(1,2).
This means, P divides AB in the ratio 1:2 and Q divides it in the ratio 2:1
Using the section formula, if a point (x,y) divides the line joining the points (x1,y1) and (x2,y2) internally in the ratio m:n, then (x,y)=(mx2+nx1m+n,my2+ny1m+n)
Substituting (x1,y1)=(3,−4) and (x2,y2)=(1,2) and m=1,n=2 in the section formula,
we get the point P=(1(1)+2(3)1+2,1(2)+2(−4)1+2)=(73,−2)
Given P as (p,−2)
⇒(p,−2)=(73,−2)
⇒p=73
Substituting (x1,y1)=(3,−4) and (x2,y2)=(1,2) and m=2,n=1 in the section formula,
we get the point Q=(2(1)+1(3)2+1,2(2)+1(−4)2+1)=(53,0)
Given Q as (53,0)
⇒(53,0)=(53,q)
⇒q=0