The line segment XY is parallel to side AC of △ABC and it divides the triangle into two parts of equal areas. Find the ratio BXAB.
1√2
We have XY || AC (Given)
So, ∠ BXY =∠ A and ∠ BYX =∠ C [Corresponding angles]
Therefore, △ ABC ∼ △ XBY [AA similarity criterion]
So, Ar(△ABC)Ar(△XBY)=(ABXB)2
Also, Ar(△ABC)=2Ar(△XBY)
So, Ar(△ABC)Ar(△XBY)=21
Therefore, (ABXB)2=21, i.e., ABXB=√21
⇒XBAB=1√2