The correct option is
A 5x2+5y2−8x−16y−36=0L1=x2+y2−4=0L2=x2+y2−4x−2y+1=0
Radical axis of C1 and C2 is :
4x+2y=5-------------(i)
4x+2y−5=0-----------(ii)
x+2y+a=0-------------(iii)
If P,Q,R,S are concylic then (i),(ii),(iii) are concurvet
∣∣
∣∣42−512a12−6−41∣∣
∣∣=0
4(−82+6a)−2(−41−12a)−5(−6−24)=0
48a=82×3−150
48a=96
a=2
The equation of finally of circle passing them PQRS is
L1+λL1=0
x2+y2−4+λ(x+2y+2)=0-------------(IV)
L2+λL2=0
x2+y2−4x−2y+1+μ(12x−6y−41)=0------------(V)
on comparing (IV) and (V)
λ=12μ−4
2λ−4=1−41μ
65μ=13
μ=15
λ=125−4
λ=−85
Hence equation of circle is
x2+y2−4×−85(x+2y+2)=0
5x2+5y2−8x−16y−36=0
Hence, option (A) is correct.