The line x=c cuts the triangle with corners (0,0), (1,1) and (9,1) into two regions. For the axis the two regions to be 'c' must be
x=c
scopeAC=19
eqnisy=x9
A1=1∫0(x−x3)dx+e∫1(x−x9)dx
(x22−x218)10+(x−x218)c1
(12−118)+c−c218−1+118
−c218+c−12
A2=9∫e(1−x9)dx
(x−x218)e9
9−8118−c−c218
92−c+c218
A1=A2
−c218+c−12=92−c+c218
2c−c29−5=0=−c2+18−45=0
(c−3)(c−15)=0
c=3,c=15(c≠15)
c=3