The line xcosα+ysinα=p touches the hyperbola
x2a2−y2b2=1 if
a2cos2α−b2sin2α=p2
A given line y = mx + c touches hyperbola when,
c = √a2m2 − b2 . . . (1)
Given line is,y=−xcotα+p cosec α ...(2)
(1) and (2) gives
p cosec α = √a2 cot2α − b2
p2 cosec2 α = a2 cos2αsin2α−b2
p2=a2cos2α−b2sin2α