wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The line xcosα+ysinα=p will be a tangent to the conic x2a2+y2b2=1, if

A
p2=a2sin2α+b2cos2α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
p2=a2+b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
p2=b2sin2α+a2cos2α
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B p2=b2sin2α+a2cos2α
xcosα+ysinα=p
x2a2+y2b2=1
x2a2+1b2(pxcosαsinα)2=1
x2a2+1b2p2+x2cos2α(2pcosα)xsin2α=1
(b2sin2α)x2+p2a2+(a2cos2α)x2(2pcosα.a2)x=a2b2sinα
(a2cos2α+b2sin2α)x2(2pa2cosα)x+p2a2a2b2sin2α=0
For tangent -
(2pa2cosα)=4(a2cos2α+b2sin2α).(p2a2a2b2sin2α)
4p2a4cos2α=4p2a4cos2α4a4b2sin2αcos2α+4p2a2b2sin2α4a2b4sin4α
4a4b2sin2αcos2α=4p2a2b2sin2α4a2b4sin4α
p2=a2cos2α+b2sin2α.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Kirchhoff's Junction Law
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon