Let A(1+k√22,1−k√22)≡(p,q)
Equation of chord AB whose mid point is (h,−h) is
T=S1xh−yh−p(x+h2)−q(y−h2)=h2+h2−ph+qh⇒2hx−2hy−p(x+h)−q(y−h)=4h2−2ph+2qh⇒4h2−ph+qh−x(2h−p)+y(2h+q)=0
It passes through A(p,q) then
4h2+(q−p)h−p(2h−p)+q(2h+q)=0
Simplifying the above equation
4h2−3h(p−q)+p2+q2=0
So for two real and different values of h,we must have
D>0
9(p−q)2−16(p2+q2)>018k2−8−16k2>0k2−4>0k∈(−∞,−2)∪(2,∞)
⇒|k|>2