The correct option is C is any real number, m≠0
Solving line with the parabola
(m(x+a)+am)2=4a(x+a)
m2(x2+a2+2ax)+a2m2+2×a(x+a)=4ax+4a2
m2x2+x(2am2−2a)+m2a2+a2m2−2a2=0
D=0 (Discriminant ) ........... [Since the line and parabola intersects]
4(am2−a)2−4(m2)(m2a2+a2m2−2)=0
(m2−1)2−(m(m−1m))2=0
(m2−1)2−(m2−1)2=0
∴ For all value of m accept m≠0.