The correct option is D 3x−4y−6=0
9x2−24xy+16y2−12x+16y−12=0
Writing equation in terms of y, we get
16y2+(−24x+16)y+(9x2−12x−12)=0
Now, using quadratic formula, we have
y=24x−16±√(−24x+16)2−4⋅16⋅(9x2−12x−12)2⋅16⇒y=24x−16±√64(3x−2)2−64(9x2−12x−12)2⋅16⇒y=24x−16±8√(9x2+4−12x)−(9x2−12x−12)2⋅16⇒y=3x−2±44⇒y=3x+24 or y=3x−64
⇒3x−4y+2=0 or 3x−4y−6=0
Alternate Solution:
9x2−24xy+16y2−12x+16y−12=0⇒(9x2−24xy+16y2)−4(3x−4y)−12=0⇒(3x−4y)2−4(3x−4y)−12=0
⇒(3x−4y+2)(3x−4y−6)=0
⇒3x−4y+2=0 or 3x−4y−6=0