The lines a2x2+bcy2=a(b+c)xy will be coincident, if
a=0 or b=c
a=b or a=c
c=0 or a=b
a=b+c
Find the condition for coincident lines
Given, a2x2+bcy2=a(b+c)xy
⇒a2x2+bcy2-a(b+c)xy=0
Comparing the above equation with a homogeneous equation Ax2+2Hxy+By2=0, we get
A=a2B=bcH=-a2(b+c)
For coincident lines, H2–AB=0
⇒a2(b+c)24-a2bc=0⇒a2(b-c)2=0
⇒a=0 and b=c
Hence, the correct answer is A, a=0 or b=c .