The correct option is D k=0 or −3
Given lines:
x−21=y−31=z−4−k and x−1k=y−42=z−51
Let (a1,b1,c1)=(1,1,−k) and (a2,b2,c2)=(k,2,1) be the d.r.'s of the given lines.
For two lines to be coplanar,
∣∣
∣∣x2−x1y2−y1z2−z1a1b1c1a2b2c2∣∣
∣∣=0
⇒∣∣
∣∣−11111−kk21∣∣
∣∣=0
⇒−1(1+2k)−1(1+k2)+1(2−k)=0
⇒k2+3k=0
⇒k=0 or −3