The correct option is A Coplanar
Any points on the two given lines x−a+dα−δ=y−aα=z−a−dα+δ and x−b+cβ−γ=y−bβ=z−b−cβ+γ can be taken as (x1,y1,z1)=(a−d,a,a+d) and (x2,y2,z2)=(b−c,b,b+c) respectively.
The corresponding D.R′s are (a1,b1,c1)=(α−δ,α,α+δ) and (a2,b2,c2)=(β−γ,β,β+γ)
Now, let us verify the determinant, D=∣∣
∣∣x1−x2y1−y2z1−z2a1b1c1a2b2c2∣∣
∣∣
⇒D=∣∣
∣∣a−d−b+ca−ba+d−b−cα−δαα+δβ−γββ+γ∣∣
∣∣
Using C1→C1+C2+C3
⇒D=∣∣
∣
∣∣3(a−b)a−ba+d−b−c3ααα+δ3βββ+γ∣∣
∣
∣∣
Clearly, two columns are proportional. Hence D=0
∴ Given lines are coplanar.