The lines →r=→i−→j+λ(2→i+→k) and →r=(2→i−→j)+μ(→i+→j−→k) intersect for
The given lines intersect, if the shortest distance between the lines is zero.
We know that the shortest distance between the lines →r
=a1+λb1 and →r=a2+μb2 is
|(a1−a2)⋅(b1×b2)||b1×b2| ........(i)
Here →a1=→i−→j,→b1=2→i+→k and
→a2=2→i−→j,→b2=→i+→j−→k
Considerb1×b2=∣∣
∣∣ijk20111−1∣∣
∣∣
=i(−1)−j(−2−1)+k(2−0)
∴b1×b2=−i+3j+2k ......(ii)
⇒|b1×b2|=√(−1)2+(3)2+22
=√1+9+4
∴|b1×b2|=√14......(iii)
Now Consider a1−a2=→i−→j−(2→i−→j)
=→i−→j−2→i+→j
∴a1−a2=−i .......(iv)
Substitute equation(ii), (iii) and (iv) in equation(i), we get
|(a1−a2)⋅(b1×b2)||b1×b2|=|−i.(−i+3j+2k)|√14
=1√14≠0
Hence, the given lines do not intersect.
Therefore, the correct option is (D) ( no value of λ and μ)