The correct option is A do not intersect for any values of l and m
Given:
→r=(^i−^j)+l(2^i+^k)
⇒→r=^i(1+2l)+^j(−1)+^k(l) and
→r=(2^i−^j)+m(^i+^j−^k)
⇒→r=^i(2+m)+^j(−1+m)+^k(−m)
If these two lines intersect each other, then coefficients of ^i,^j,^k are equal.
⇒1+2l=2+m ⋯(i)
⇒−1=m−1⇒m=0
⇒l=−m⇒l=0
These values of m and l do not satisfy eq.(i)
Hence, the two given lines do not intersect for any values of l and m.