The lines rcos(θ−α)=a, rcos(θ−β)=b and rcos(θ−γ)=c are concurrent if
A
∑acos(β−γ)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
∑acos(β+γ)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
∑asin(β−γ)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
∑asin(β+γ)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C∑asin(β−γ)=0 Given equations are rcos(θ−α)=a ⇒rcosαcosθ+rsinαsinθ−a=0 ....(i) rcos(θ−β)=b ⇒rcosβcosθ+rsinβsinθ−b=0 ....(ii) rcos(θ−γ)=c ⇒rcosγcosθ+rsinγsinθ−c=0 ....(iii) Since, these are concurrent ∣∣
∣∣cosαsinα−acosβsinβ−bcosγsinγ−c∣∣
∣∣=0 ⇒a(cosβsinγ−sinβcosγ)+b(sinαcosγ−cosαsinγ)+c(cosαsinβ−sinαcosβ)=0 ⇒∑asin(β−γ)=0