Let (h,k) be the centre and r the radius. The point (h,k) lies on either of the two bisectors of the angle between tangents, i.e.
x+y−12=0 and 3x−3y−4=0
∴h+k−12=0.....(1)
and h−k=4/3.....(2)
It passes through (4,−1)
∴(h−4)2+(k+1)2=r2
Again p=r gives
∴(h−2k+4√5)2=(h−4)2+(k+1)2.....(3)
Now put k=12−h from (1)
∴(h−24+2h+4)2=5[(h−4)2+(13−h)2]
∴(3h−20)2=5(2h2−34h+177)
or h2−50h+525=0
∴h=15,35 and k=−3,−23
Hence the circles are
(x−15)2+(y+3)2=125
or (x−35)2+(y+23)2=1445
Again if you put k=h−4/3 from (2) and proceed as above you will not find real values of h and etc.