The locus of a point, from where tangents to the rectangular hyperbola x2−y2=a2 contain an angle of 45o, is
A
(x2+y2)2+a2(x2−y2)=4a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2(x2+y2)2+4a2(x2−y2)=4a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(x2+y2)2+4a2(x2−y2)=4a4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(x2+y2)2+a2(x2−y2)=a4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B(x2+y2)2+4a2(x2−y2)=4a4 Given equation of hyperbola is x2−y2=a2 or x2a2−y2a2=1 Let y=mx±√m2a2−a2 be two tangents to the hyperbola. Since, it passes through (h,k). ⇒(k−mh)2=m2a2−a2 ⇒m2(h2−a2)−2khm+k2+a2=0 ⇒m1+m2=2khh2−a2and m1m2=k2+a2h2−a2 Now, tan45o=m1−m21+m1m2 ⇒1=(m1+m2)2−4m1m2(1+m1m2)2 ⇒(1+k2+a2h2−a2)2=(2khh2−a2)2−4(k2+a2h2−a2) ⇒(h2+k2)2=4h2k2−4(k2+a2)(h2−a2) ⇒(x2+y2)2=4(a2y2−a2x2+a4) ⇒(x2+y2)2+4a2(x2−y2)=4a4