The locus of a point P, such that the sum of whose distances from A(4,0,0) and B(−4,0,0) is equal to 10, is
A
25x2+16y2+9z2−225=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
9x2+16y2+25z2−225=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
16x2+25y2+25z2−225=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
9x2+25y2+25z2−225=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D9x2+25y2+25z2−225=0 Let the coordinates of P be (x,y,z).
The coordinates of points A and B are (4,0,0) and (−4,0,0) respectively.
It is given that PA+PB=10⋯(i)
Using Distance Formula,√(x2−x1)2+(y2−y1)2+(z2−z1)2 in equation (i) ⇒√(x−4)2+(y)2+(z)2+√(x+4)2+(y)2+(z)2=10 ⇒√(x−4)2+(y)2+(z)2=10−√(x+4)2+(y)2+(z)2
Squaring both sides, ⇒(x−4)2+y2+z2=100+(x+4)2+(y)2+(z)2−20√(x+4)2+y2+z2 ⇒x2+16−8x+y2+z2=100+x2+16+8x+y2+z2−20√x2+16+8x+y2+z2 ⇒20√x2+16+8x+y2+z2=100+16x ⇒5√x2+16+8x+y2+z2=25+4x
Squaring both sides again, ⇒25(x2+16+8x+y2+z2)=625+16x2+200x ⇒25x2+400+200x+25y2+25z2=625+16x2+200x ⇒9x2+25y2+25z2−225=0
Thus the required locus is9x2+25y2+25z2−225=0