Let x2+y2+2gx+2fy+c=0 …(1) be the circle.
Given that circles cut each other orthogonally.
∴2f1f2+2g1g2=c1+c2
⇒2g(−10)+2f(0)=c+4
⇒−20g=c+4 ⋯(2)
Circle (1) touches the line x−2=0
⇒√g2+f2−c=∣∣
∣∣−g−2√12∣∣
∣∣
⇒g2+f2−c=(g+2)2
⇒f2−c=4g+4
⇒f2−4g=c+4 …(3)
From (2) and (3),
f2−4g=−20g
⇒f2=−16g
⇒(−f)2=16(−g)
∴ Locus of (−g,−f) is y2=16x
⇒a=+16