The correct option is D x−430=y−13−1=z+231
Let x−22=y−11=z3=k
So, any point on the line is (2k+2,k+1,3k)
Let the foot of the perpendicular drawn from the point to the plane is (x1,y1,z1)
Now,
x1−2(k+1)=y1−(k+1)=z1−3k=−2(k+1)+k+1+3k−11+1+1
⇒x1−2(k+1)=y1−(k+1)=z1−3k=−(2k+23)⇒x1=43+0k; y1=−k+13; z1=k−23⇒k=x1−430=y1−13−1=z1+231
So, the locus will be x−430=y−13−1=z+231