wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The locus of mid-points of the line segments joining (3,5) and the points on the ellipse x24+y29=1 is

A
36x2+16y2+90x+56y+145=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
9x2+4y2+18x+8y+145=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
36x2+16y2+72x+32y+145=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
36x2+16y2+108x+80y+145=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 36x2+16y2+108x+80y+145=0
Let general point on ellipse (2cosθ,3sinθ) be
Let mid-point of (2cosθ,3sinθ) and (3,5) be (h,k)
2cosθ3=2h and 3sinθ5=2k
cosθ=2h+32 and sinθ=2k+53
We know that sin2θ+cos2θ=1
Putting the value of sinθ and cosθ by replacing h with x and k with y
(2y+53)2+(2x+32)2=1
4(2y+5)2+9(2x+3)2=36
36x2+16y2+108x+80y+145=0

flag
Suggest Corrections
thumbs-up
22
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and Ellipse
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon