Equation of lines are:
xcosθ+ysinθ=a…(1)
xsinθ−ycosθ=b…(2)
Squaring each equation and adding it,
(xcosθ+ysinθ)2+(xsinθ−ycosθ)2=a2+b2
⇒x2cos2θ+y2sin2θ+x2sin2θ+y2cos2θ=a2+b2
⇒x2(cos2θ+sin2θ)+y2(cos2θ+sin2θ)=a2+b2
⇒x2×1+y2×1=a2+b2
⇒x2+y2=a2+b2
∴ Radius of circle is √a2+b2
Hence, the locus of point of intersection of lines
xcosθ+ysinθ=a and xsinθ−ycosθ=b is a circle of radius √a2+b2