The correct option is A y2=a(x−3a)
Let the two points at which normals are drawn be P(at21,2at1) and Q(at22,2at2)
Since, the normals are perpendicular,
∴(−t1)(−t2)=−1
⇒t1t2=−1
Now the points of intersection of normals will be (2a+a(t21+t22+t1t2),−at1t2(t1+t2))
Let the locus be (h,k)
⇒h=2a+a(t21+t22−1)
⇒h=a(t21+t22+1)
⇒h=a((t1+t2)2−2t1t2+1)
⇒h=a((t1+t2)2+3) ...(1)
And k=a(t1+t2) ...(2)
From eqn (1) and (2), we get
h=a[(ka)2+3]
⇒a(h−3a)=k2
So, locus is y2=a(x−3a)