The correct option is B 9y2=4ax
Let Co-ordinates of double ordinate to parabola y2=4ax are (at2,2at) and (at2,−2at)
So, points of trisection are (at2(1)+at2(2)1+2,2at(1)+(−2at)(2)1+2)
and (at2(2)+at2(1)2+1,2at(2)+(−2at)(1)2+1)
≡(at2,−2at3)and (at2,2at3)≡(h,k) Let
⇒t=±3k2a and h=at2
⇒h=a(9k24a2)
⇒h=9k24a
⇒9y2=4ax