The correct option is B A line and a point
The identity in the passage is
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
So, we write the given equation (in the question) as x3+y3+(−1)3=−3xy
ie, x3+y3+(−1)3=3(x)(y)(−1)
Thus if we put a=x,b=y,c=−1, we get
a3+b3+c3=3abc
Hence, a+b+c=0; a2+b2+c2−ab−bc−ca=0
ie., (a+b+c=0); 12((a−b)2+(b−c)2+(c−a)2)=0
⇒x+y−1=0; 12[(x−y)2+(y+1)2+(−1−x)2]=0
ie, x+y=1 A line and
x=y=−1 A point (-1,-1)