The correct option is D y2=16x
Let S: x2+y2+2gx+2fy+c=0 is the second circle.
centre≡(−g,−f) .radius =√g2+f2−c
This circle and x2+y2−20x+4=0 are orthogonal to each other, then by condition of orthogonality
2g1g2+2f1f2=c1+c2
⇒2g(−10)+0=c+4
−20g=c+4 ---------(1)
and circle s touch x=2 line,
√g2+f2−c=∣∣∣−g−21∣∣∣
g2+f2−c=g2+4+4g
f2−c=4+4g --------(2)
from (1) & (2)
f2=4g−20g
f2=−16g
⇒(−f)2=16(−g)
So, locus of centre (−g,−f) is
⇒y2=16x