The correct option is A 16x2−9y2+32x+36y−36=0
H≡16(x2+2x+1)−9(y2−4y+4)=144
≡(x+1)29−(y−2)216=1
e=√1+169=53
Foci (±ae−1,2)=(±5−1,2)
Foci are (4,2) and (−6,2)
Let a general point be P(−1+3secθ,2+4tanθ)
Let centroid be (h,k)
h=4−6−1+3secθ3, k=2+2+2+4tanθ3
⇒h=−1+secθ and
3k=6+4tanθ
⇒secθ=(h+1) and 34(k−2)=tanθ
Now sec2θ−tan2θ=1
⇒16(h+1)2−9(k−2)2=16
⇒16x2−9y2+32x+36y−36=0