The locus of the equation √(x−2)2+y2+√(x+2)2+y2=4
represent
We have,
√(x−2)2+y2+√(x+2)2+y2=4
Now, we can write this,
√(x−2)2+y2=4−√(x+2)2+y2
On squaring both side and we get,
(x−2)2+y2=16+(x+2)2+y2−2×4×√(x+2)2+y2
⇒x2+4−4x+y2=16+x2+4+4x−8√(x+2)2+y2
⇒−4x=16+4x−8√(x+2)2+y2
⇒−x=4+x−2√(x+2)2+y2
⇒−2x−4=−2√(x+2)2+y2
⇒x+2=√(x+2)2+y2
On squaring both side and we get,
⇒(x+2)2=(x+2)2+y2
⇒y2=0
⇒y=0
Hence, this equation is line.