The locus of the feet of perpendiculars drawn from the point (a,0) on tangents to the circle x2+y2=a2 is
xcosθ+ysinθ=a
is equation of tangent to x2+y2=a2
Let P(h,k) is feet of perpendicular from (a,o) to
xcosθ+ysinθ=a
x−acosθ=y−osinθ=−(a(cosθ−1))1
x=a−a cosθ (cosθ−1) and y=−a sinθ (cosθ−1)
∴(x−a)2+y2=a2(cosθ−1)2×(1) ---(1)
=−a2cosθ(cosθ−1)+a2(cosθ−1)2
a2(cosθ−1)[(cosθ−1)−cosθ]
(x−a)2+y2=a2(1−cosθ)
--- (2)
∴ from (1) & (2),
⇒ (x2+y2−ax)2=a2(y2+(x−a)2)