The correct option is B (x2+y2)2(a2y2−b2x2)=(a2+b2)2x2y2
The equation of any normal at P(φ) to the hyperbola x2a2−y2b2=1 is
(acosφ)x+(bcotφ)y=a2+b2
Let locus of the foot of perpendicular from origin be (h,k)
⇒h−0acosφ=k−0bcotφ=−(a2+b2a2cos2φ+b2cot2φ)
Let hacosφ=kbcotφ=−(a2+b2a2cos2φ+b2cot2φ)=t
⇒h=(acosφ)t
⇒acosφ=ht⋯(1)
bcotφ=kt⋯(2)
Now, −(a2+b2a2cos2φ+b2cot2φ)=t
⇒−⎛⎜
⎜
⎜⎝a2+b2h2t2+k2t2⎞⎟
⎟
⎟⎠=t
⇒t=−(h2+k2a2+b2)
Eliminating φ from (1) and (2), we get
sec2φ−tan2φ=1⇒(ath)2−(btk)2=1
⇒(a2h2−b2k2)⋅(h2+k2a2+b2)2=1
∴Required locus is (x2+y2)2(a2y2−b2x2)=(a2+b2)2x2y2