The correct option is C x2+y2+2x−2y=0
Equation of circle (x+1)2+(y−1)2=22
Let the end point of chords
(x1,y1)=(2cosθ−1,2sinθ+1)
(x2,y2)=(2sinθ−1,−2cosθ+1)
Mid point of chord M=(2cosθ−1+2sinθ−12,2sinθ+1−2cosθ+12)
M=(cosθ+sinθ−1,sinθ−cosθ+1)
⇒(h,k)=(cosθ+sinθ−1,sinθ−cosθ+1)
Locus of mid point
(h+1)2+(k−1)2=2⇒h2+k2+2h−2k=0
⇒x2+y2+2x−2y=0