The correct option is
C x2+y2+2x−2y=0Given circle is
x2+y2+2x−2y−2=0 which can be written as
(x+1)2+(y−1)2=4So, centre of the circle is (−1,1) and radius is 2
Let O be the centre and AB be the chord of the circle such that it makes an angle of 90o at the centre
Draw OA and OB
∴∠AOB=90o
Now, OA and OB are radius of the circle
∴OA=OB
⟹∠OAB=∠OBA ....... [Angle opposite to equal sides are equal]
But, ∠OAB+∠OBA+∠AOB=180o
⟹2∠OAB=180o−90o
∠OAB=45o=∠OBA
OP is the perpendicular drawn from the centre of the circle
∴p(h,k) is the midpoint of the chord AB
Join OP which makes an angle of 90o with the chord AB.
Now, △APO is a right angled triangle such that ∠APO=90o
∴sin45o=OPOA=OP2⇒OP=√2.
But, OP=√(h+1)2+(k−1)2
∴√(h+1)2+(k−1)2=√2
⟹h2+2h+1+k2−2k+1=2
⟹h2+k2+2h−2k=0
∴ Locus of P is x2+y2+2x−2y=0