The correct option is C x=a2
Let a point lying on the parabola be P=(h,k). The fous of the parabola y2=4ax is F=(a,0).
Therefore the midpoint of the PF=(h+a2,k2).
Hence x=h+a2 and y=k2.
Therefore
h=2x−a and k=2y.
Now k2=4ah or 4y2=4a(2x−a)
y2=2ax−a2
Therefore the directrix of the parabola is
2ax−a2=0 or a(2x−a)=0 since a≠0, 2x−a=0 or x=a2.