The correct option is
B (y−4ax)(x+a)2=d2x2Let
P be the point of intersection of the tangents to the parabola .
The equation of the pair of tangents. PQ and PR is
[(yy1)−2a(x+x1)]2=(y2−4ax)(y21−4ax1)
These lines meet the directix x+1=0 or x=−a.
Substituting this we get,
[(yy1)−2a(−a+x1)]2=(y2−4a2)(y21−4ax1)
On expanding we get,
(yy1)2+[2a(x1−a)]2−4ayy1(x−a)=(yy1)2−4ax1y2+4ax1y2+4a2y21−16a3x1
(i.e) y2+[y21−y21+4ax1]−y[4a(x1−a)y1]+[4a2(x1−a)2−4a2(y21−4ax1)y]=0
x1y2−y1(x1−a)y+a[(x1−a)2−(y21−4ax1)]=0
⇒x1y2−yy1(x1−a)+a[(x1−a)2−y21]=0
Here y1 and y2 are the ordiantes of the point of intersection of tangents with directix x+a=0.
Sum of the ordinates is y1+y2=−ba
=(x1−a)y1
Product of the ordinates is y1y2=a[(x1+a)2−y21]x1.
∴d2=(y1−y2)2=(y1+y2)2−4y1y2
Now substituting the values we get,
d2=(x1−a)2y21−4ax1[(x1+a)2−y21]
x21d2=y21[(x1−a)2+4ax1]−4ax1(x1+a)2
=y21(x1+a)2−4ax1(x1+a)2
=(x1+a)2(y1−4ax1)
Hence the locus of (x1,y1) is
x2d2=(y−4ax1)(x+a)2
Hence,
Option (A) is correct ansewer.