Let point of intersection of lines is (α,β)
So, the point (α,β) lies on both the lines.
∴√3x−y−4√3k=0
⇒√3α−β−4√3k=0
⇒k=√3α−β4√3 …(1)
And √3kx+ky−4√3=0
⇒√3kα+kβ−4√3=0
⇒√3α×√3α−β4√3+β×√3α−β4√3−4√3=0 [From equation (1)]
⇒3α2−√3αβ+√3αβ−β2−48=0
⇒3α2−β2=48
For the locus replace (α β) by (x,y)
⇒3x2−y2=48
Hence, the locus of point of intersection of lines √3x−y−4√3k=0 and √3kx+ky−4√3=0 for the different value of k is the hyperbola 3x2−y2=48.