The correct option is B a6x2−b6y2=(a2+b2)2
Let P(h,k) be the point of tangents at the end-points of a normal chord
axcosθ−bycotθ=a2+b2⋅⋅⋅⋅⋅⋅⋅⋅(i)
The equation of chord of contact of tangents drawn from P(h,k) to the hyperbola is
hxa2−kyb2=1⋅⋅⋅⋅⋅⋅⋅⋅(ii)
Clearly (i) and (ii) represent the same line
∴a3cosθh=−b3cotθk=a2+b21
⇒secθ=a3h(a2+b2),tanθ=−b3k(a2+b2)
⇒sec2θ−tan2θ=a6h2(a2+b2)2−b6k2(a2+b2)2
⇒a6h2−b6k2=(a2+b2)2
Hence the locus of P(h,k) is a6x2−b6y2=(a2+b2)2