The locus of the point tanθ+sinθ,tanθ−sinθ is
We have,
x=tanθ+sinθ.......(1)
y=tanθ−sinθ.......(2)
Can it take all allowed real value it to [−π,π]to[−π2,π2]
On adding and subtracting equation (1) and (2) and we get,
x+y=2tanθ
x−y=2sinθ
On divide and we get,
x+yx−y=tanθsinθ
x+yx−y=secθ
On squaring both side and we get,
(x+yx−y)2=sec2θ
If x+y=2tanθ
On squaring and we get,
(x+y)2=4tan2θ
⇒(x+y)2=4(sec2θ−1)
⇒(x+y)2=4((x+y)2(x−y)2−1)
⇒(x+y)2=4((x+y)2−(x−y)2(x−y)2)
⇒(x+y)2(x−y)2=4((x+y)2−(x−y)2)
⇒(x2−y2)2=4[4xy]
⇒(x2−y2)2=16xy
Hence, this is the answer.