The correct option is
A a6y2−b6x2=(a2+b2)2x2y2Equation of any normal to the hyperbola
x2a2–y2b2=1.............(1)
axsecθ+bytanθ=a2+b2............(2)
Let (x1,y1) be its pole w.r.t. 1
Polar of (x1,y1) w.r.t. 1 is xx1a2–yy1b2=1..........(3)
As (2) and (3) both represent the polar of (x1,y1),
comparing coefficient
x1a2asecθ=–y1b2btanθ=1a2+b2
secθ=a3x1(a2+b2) , tanθ=b3y1(a2+b2)
secθ2−tanθ2=1
a6x12(a2+b2)2−b6y12(a2+b2)2=1
Hence locus of (x1,y1) is
a6x2−b6y2=(a2+b2)2
a6y2−b6x2=(a2+b2)2x2y2
hence proved