The locus of the vertices of the family of parabola y=a3x23+a2x2−2a, a being parameter is :
A
xy=34
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
xy=3516
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
xy=64105
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
xy=10564
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dxy=10564 y=a3x23+a2x2−2a ⇒y=a((ax)23+ax2−2) ⇒y=a((ax)2(√3)2+2(ax)(√3)⋅√34+342−2−342) ⇒y=a(ax√3+√34)2−35a16 ⇒y+35a16=a(ax√3+√34)2⇒y+35a16=a33(x+34a)2
Vertex is (−34a,−35a16)=(h,k) Locus is hk=3⋅354⋅16=10564 xy=10564