z=x+iyz−2=(x−2)+iyz+2=(x+2)+iyz−2z+2=[(x−2)+iy][(x−2)−iy][(x+2)+iy][(x+2)−iy]z−2z+2=(x2−4)+y2+i(yx+2y)+i(−yx+2y)(x+2)2+y2z−2z+2=(x2+y2−4)+i(4y)(x+2)2+y2(z−2z+2)=4y(x+2)2+y2x2+y2−4(x+2)2+y2=4yx2+y2−4=√3(x2+y2−4)=4y√3x2+y2−4y√3−4=0x2(y−2√3)2=4+43x2+(y−2√3)2=163x2(y−2√3)2=(4√3)2Lengthofcircumference=2π(4√3)=8π√3