The locus of z satisfying the inequality log13|z+1| > log13|z-1| is
R(z)<0
We know that logam>logan ⇒ m>n or m<n, according as a>1 or 0<a<1
Hence for z=x+iy
log13|z-1| ⇒|z+1|<|z-1|
{o<13<1}
⇒ |x+iy+1|<|x+iy-1|
⇒ (x+1)2 + y2<(x−1)2 + y2
⇒ 4x<0 ⇒ x<0 ⇒ Re(z)<0