The lowest form of thea2−b2a3−b3 is___
a+ba2−ab+b2
a+ba2+ab+b2
a−ba2+ab+b2
a−ba2−ab+b2
Given fraction is a2−b2a3−b3.
(a2−b2) can be written as (a+b)×(a−b)
Similarly (a3−b3) = (a−b)×(a2+ab+b2)
⟹ a2−b2a3−b3 =(a+b)×(a−b)(a−b)×(a2+ab+b2)
= a+ba2+ab+b2
The shortest form of (a3 + b3)(a2−ab+b2) is ___.