The (m + n)th and the (m - n)th terms of a GP are p and q respectively. Show that the mth and the nth terms of the GP are √pq and (qp)(m2n)
Let a be the first term and r be the common ratio of the given GP.
Then,
Tm+n=p and Tm−n=q
⇒ ar(m+n−1)=p . . .(i) and ⇒ ar(m−n−1)=q . . . (ii)
⇒ ar(m+n−1)arm−n−1=pq
⇒ r[(m+n−1)−(m−n−1)]=pq
⇒ r2n=pq⇒r=(pq)12n
⇒ 1r=(qp)12n . . . (iii)
∴ Tm=ar(m−1)
=ar(m+n−1)×(1r)n
=p×{(qp)12n}n [using (i) and (iii)]
=p×(qp)(12n×n)=p×(qp)12=√pq
And, Tn=ar(n−1)
=ar(m+n−1)×(1r)m
=p×{(qp)12n}m=p×(qp)m2n [using (i) and (iii)]
Hence, Tm=√pq and Tn=p×(qp)m2n