Dear student
R = a cos θ i+ a sin θj ------(i)
R is the position vector of particle at any time performing circular motion and θ is angular displacement
ω =θ/t or θ =ω t --------(ii)
from (i) and (ii)
Rt = a cos ω t i+ a sin ω t j
at t=0 R0=a i
Displacement
Rt-R0=a(cos ωt-1)i + a sin ω t j
magnitude of displacement= [(a(cos ωt-1))2+(a sin ωt)2]1/2=[2a2-2a2cos ωt]1/2 =a[2(1-cos ωt)]1/2
now , cos ωt = (1-2 cos2(ωt/2))
Hence magnitude =2a[cos2(ωt/2)]1/2 =2 a cos(ωt/2)
Regards