The correct option is C tan−1(1−√3−√2)(1+√3+√2)
Let's write the components of each vector first.
−−→OA=Acos30∘ ^i+Asin30∘ ^j
Similarly,
−−→OB=Acos60∘ ^i−Asin60∘ ^j
And, −−→OC=−Acos45∘ ^i+Asin45∘ ^j
So, −−→OA+−−→OB−−−→OC=√32A^i+A2^j+A2^i−√32A^j+A√2^i−A√2^j
Now, separating ^i and ^j components we get,
−−→OA+−−→OB−−−→OC=(√32A+A2+A√2)^i+(A2−√32A−A2)^j
I.e. =A2(√3+1+√2)^i+A2(1−√3−√2)^j
The direction for the given set of vectors is given by,
tanθ=A2(1−√3−√2)A2(√3+1+√2)
i.e. θ=tan−1(1−√3−√2√3+1+√2)