The correct option is
D 12|z1−z2|rGiven that |z−z1|=|z−z2|
and ∣∣∣z−(z1+z2)2∣∣∣=r volume r>|z1−z2|
⇒ Let z=x+iy z1=x1+iy1 z2=x2+iy2
we have |z1−z1|=|z−z2|
⇒|(x−x1)+i(y−y1)|2=|(x−x2)+i(y−y2)|2
⇒(x−x1)2+(y−y1)2=(x−x2)2+(y−y2)2
⇒x2−2xx1+x21+y2−2yy1+y21=x2−2xx2+x22+y2−2yy2+y22
⇒x21+y21−2xx1−2yy1=x22+y22−2xx2−2yy2
⇒−2xx1−2yy1+2xx2+2yy2=x22+y22−x21−y21
∴2x(x2−x1)+2y(y2−y1)=x22−x21+y22−y21⟶(1)
Given ∣∣∣z−(z1+z2)2∣∣∣≤r
⇒∣∣∣z−(z1+z2)2∣∣∣≤|z1−z2|
⇒∣∣∣(x+iy)−x1+iy1+x2+iy22∣∣∣≤|x1+iy1−x2−2iy2|
⇒|2x+2iy−x1+iy1−x2−2iy2|≤2|x1−x2+i(y1−y2)|
⇒|2x−x1−x2+i(2y−y1−y2)|≤2|x1−x2+i(y1−y2)|⟶(2)
From (1)
⇒2x(x2−x1)+2y(y2−y1)=(x2−x1)(x2+x1)+(y2−y1)(y2+y1)
⇒2x(x2−x1)−(x2−x1)(x2+x1)=(y2−y1)(y2+y1)−2y(y2−y1)
∴(x2−x1)[2x−x2−x1]=(y2−y1)[y2+y1−2y]⟶(3)
Substitute (3) in (2)
⇒|(x2−x1)+i(y2−y1)|≤2|x1−x2+i(y1−y2)|
⇒|x2−iy2−x1+iy1|≤2|x1−iy1−x2−iy2|
⇒|z2−z1|≤2|z1−z2|
⇒|z2−z1|≤2x
=12|z2−z1|r
Hence, the answer is 12|z2−z1|r.