The correct option is
C 3√34 ablet ABC an isosceles triangle. x2a2+y2b2=1(given)
C lies on the end of the major
axis,AC=BC
let A(acosθ,bsinθ)
B(asinθ,−bsinθ)
Let A is the triangle of the inscribed triangle
,then A=(AB×CD)2
A=(2bsinθ×(a−acosθ))2
A=2a(bsinθ(1−cosθ))2
A=absinθ(1−cosθ)−⋅(i)
diff with respect to θ,
dAdθ=ab[ddθsinθ(1−cosθ)]
dAdθ=ab[sinθddθ(1−cosθ)+(1−cosθ)ddθsinθ]
dAdθ2ab[sin2θ+cosθ−cos2θ]−⋅(ii)
dadc=0
ab(sin2θ+cosθ−cos2θ)=0
cosθ−cos2θ=0(∴cos2θ−sin2θ=con2θ)
cosθ=cos2θ
2θ=2nπ±θ
θ=nπ+θ2
θ=nπ−θ2 where n=0,±1,±2….
θ=2π3∈(0,π)again differetiating eq. (ii)
d2Adθ2=ab[2sinθcosθ−sinθ+2sinθsinθ)
d2Adθ2=ab[4sinθcosθ−sinθ]
[d2Adθ2]θ=2π/3′∠θ
So, θ=2π/3,A is maximum.
Now, θ=2π/3 in the eq (i)
A= ab sin(2π3)×(1−cos(2π3))
A=ab(√32)(1+12)
A=[3√34]ab
Correct option is (C)