wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The maximum distance of the centre of the ellipse x281+y225=1 from a normal to the ellipse is _____________.

Open in App
Solution

x281+y225=1
centre(0,0)
Equation of tangent in parametric form
x9cosθ81+y5sinθ25=1
xcosθ9+ysinθ5=1
y=5xcosθ9sinθ+5sinθ
Slope of normal×Slope of Tangent=1
mn=9sinθ5cosθEquation of normal; y5sinθ=9sinθ5cosθ(x9cosθ)5ycosθ25sinθcosθ=9xsinθ81sinθcosθ
5y cosecθ25=9xsecθ81
9xsecθ5y cosecθ56
Distance form centre=ax1+by1+ca2+b2=∣ ∣0+0+56(9secθ)2+(5 cosecθ)2∣ ∣
=5681sec2θ+25 cosec2θ(A)
To find the maximum value
81sec2θ+25 cosec2θ=m
dmdθ=0
81×2sec2θtanθ25×2 cosec2θcotθ=0
81×2sec2θtanθ=25×2 cosec2θcotθ
81×2sec2θsecθcosecθ=25×2 cosec2θcosecθsecθ
tan4θ=2581
tan2θ=59
cot2θ=95
Substituting in A
=5681(1+tan2θ)+25(1+cot2θ)
=5681(149)+25(145)
=56126+70=56196=5614=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon