x281+y225=1
centre≡(0,0)
Equation of tangent in parametric form
x9cosθ81+y5sinθ25=1
xcosθ9+ysinθ5=1
⇒y=−5xcosθ9sinθ+5sinθ
Slope of normal×Slope of Tangent=−1
mn=9sinθ5cosθEquation of normal; y−5sinθ=9sinθ5cosθ(x−9cosθ)5ycosθ−25sinθcosθ=9xsinθ−81sinθcosθ
5y cosecθ−25=9xsecθ−81
9xsecθ−5y cosecθ−56
Distance
form
centre=∣∣∣ax1+by1+c√a2+b2∣∣∣=∣∣
∣∣0+0+−56√(9secθ)2+(5 cosecθ)2∣∣
∣∣
=56√81sec2θ+25 cosec2θ−−−−−−−(A)
To find the maximum value
81sec2θ+25 cosec2θ=m
dmdθ=0
81×2sec2θtanθ−25×2 cosec2θcotθ=0
81×2sec2θtanθ=25×2 cosec2θcotθ
81×2sec2θsecθcosecθ=25×2 cosec2θcosecθsecθ
tan4θ=2581
tan2θ=59
∴cot2θ=95
Substituting in A
=56√81(1+tan2θ)+25(1+cot2θ)
=56√81(149)+25(145)
=56√126+70=56√196=5614=4