The correct option is
C 1Ellipse : x29+y24=1
Equation of the normal,
axcosθ−bysinθ=a2−b2∴3xcosθ−2ysinθ=5
Or, 3xsinθ−2ycosθ=5cosθsinθ
Distance from origin d= |0+0−5cosθsinθ|√9(cosθ)2+4(sinθ)2
Or, d=5√9(cscθ)2+4(secθ)2
To maximize d we need to minimize the denominator.
E=9(cscθ)2+4(secθ)2 then,dEdθ=−18(cscθ)2cotθ+8(secθ)2tanθ ForMinimizing,dEdθ=0∴−18(cscθ)2cotθ+8(secθ)2tanθ=0Or,18(cscθ)2cotθ=8(secθ)2tanθOr,(tanθ)4=94Or,tanθ=√32∴cscθ=√53andsecθ=√52
On putting the values in d we get,
d=5√15+10Or,d=1